Некоммерческое
партнерство
инженеров
Инженеры по отоплению, вентиляции, кондиционированию воздуха, теплоснабжению и строительной теплофизике
(495) 984-99-72 НП "АВОК"

(495) 621-80-48 Секретарь (тел./факс) ООО ИИП "АВОК-ПРЕСС"
(495) 107-91-50

АВОК ассоциированный
член

Создание и поддержание требуемых микроклиматических условий в помещениях и подклетах православных храмов

Основными мероприятиями для предотвращения конденсации водяных паров на незаглубленных и заглубленных поверхностях наружных ограждений подклетов (цокольных или подвальных помещений) храмов являются: осушка переувлажненных конструкций до равновесной влажности, дополнительное утепление наружных ограждений, конструирование систем отопления и вентиляции, а при наличии оконных проемов – установка дополнительного ряда оконных рам (двойное или тройное остекление) с подачей теплого воздуха от нагревательных приборов к окнам с помощью декоративных направляющих экранов.

Влажностный режим в подвальных помещениях церквей и соборов колеблется в достаточно широких пределах. Максимальная относительная влажность внутреннего воздуха наблюдается в период оттепелей.

Применение для осушения стен церквей и храмов общепринятых методов гидроизоляции (закладки гидроизоляционных слоев) с интенсивным вентилированием нагретым воздухом эффективно для помещений общественных и производственных зданий без специальных требований, а в храмах этот метод не возможен из-за потери существующего исторического слоя росписей, штукатурки, отделки, лепнины и несущей способности стен и сводов. Для осушения ограждений храмов можно применить методы пассивного и активного электроосмоса.

Электроосмотический метод осушения стен заключается в том, что в стенах горизонтально заделывают проводник в виде медной проволоки, который благодаря заземлениям, проходящим в фундаменте, создает полярность, обратную естественно возникающей между ограждениями подвала у подошвы фундамента и стенами на уровне поверхности. Поэтому электроосмотические силы перемещают влагу из конструкций фундамента в направлении, обратном действию капиллярных сил.

Рождественская церковь в Нижнем Новгороде

Рисунок 1.

Рождественская церковь в Нижнем Новгороде

Принципиальная схема устройства установки электроосмотического осушения представлена на рис. 2. Кирпичная кладка из глиняного обыкновенного кирпича кладется в металлической ванне и с одной боковой стороны ограждается металлическим коробом.

Размеры 1 030 x 1 030 x 1 040 мм. Ванна перед началом возведения кладки и металлический короб после строительных работ засыпаются песком. Целью устройства такой конструкции является создание искусственной разности электрических потенциалов между грунтом и кирпичом, естественно возникающей в реальных условиях.

Под действием капиллярных и электроосмотических сил влага из грунта проникает в кирпич. Миграция влаги в кубе кладки происходит в сторону свободной боковой поверхности. Водяные пары со свободной поверхности кладки диффундируют в помещение за счет разности потенциалов относительного давления водяных паров на поверхности ограждения и в воздушной среде.

Введя внизу медный электрод с положительным потенциалом, а вверху алюминиевый – с отрицательным, замкнув их накоротко между собой, мы создаем условия протекания тока I" по внешней цепи от медного электрода к алюминиевому. Согласно теории замкнутой цепи внутри кирпича должен существовать разностный ток I, направленный от алюминиевого электрода к медному:

I – I" = I'.

Поскольку ток короткого замыкания I" значительно больше капиллярного тока I', то ток I является рабочим током, который создает условия обратного движения жидкости сверху вниз. Таким образом, конструкция из штырей способствует удалению влаги и может выполнять роль гидроизоляции.

В большинстве храмов Владимирской, Пермской, Ивановской и Нижегородской областей заглубленные конструкции восстанавливаемых и реконструируемых храмов находятся в переувлажненном состоянии.

Температурное поле наружной стены вблизи оконных проемов изменяется. Это изменение тем значительнее, чем толще стена и чем меньше расстояние между оконными переплетами. При этом температура внутренней поверхности стены несколько повышается по мере приближения к углу проема, а на откосах проема резко понижается.

В зонах с отрицательными значениями температуры в толще конструкций стен и откосов оконных проемов подклетов происходит замерзание конденсата и влаги, что приводит к разрушению структуры материала и снижению его прочностных характеристик.

Переувлажненные ограждающие конструкции вызывают дополнительные теплопотери через зоны регулярных (сезонных) температурных колебаний. Однако при расчетах отопления эти дополнительные теплопотери не учитываются, что приводит к понижению значению температуры в помещениях подклетов ниже точки росы и конденсации водяных паров на внутренних поверхностях наружных стен и пола в храмах. Теплопотери через ограждающие конструкции подклетов храмов оказываются больше на 10–20 % от расчетных.

Схема экспериментальной установки электроосмотического осушения стен

Рисунок 2.

Схема экспериментальной установки электроосмотического осушения стен

В результате экспериментальных исследований, проведенных в нескольких храмах Нижнего Новгорода и Нижегородской области за период 1994–2006 годов (Спасская церковь и cобор Cвятого Александра Невского Нижнего Новгорода, Крестовоздвиженский cобор Пермской области, Троицкая церковь г. Заволжье и Церковь Cвятой Троицы деревни Ясенцы Нижегородской области), получены положительные результаты по снижению теплопотерь подклетов. Величины снижения теплопотерь DQ через ограждающие конструкции подклетов до Qпод1 и после Qпод2 их осушки, проведении защитных мероприятий и наличии инженерных систем приведены в табл. 1 для стен подклетов толщиной dо = 1,04–1,81 м и температурах внутреннего воздуха tв = 12–14 °С, наружного воздуха tн = –25 ч ÷ –34 °С.

Данные результаты свидетельствуют о том, что только за счет осушки переувлажненных конструкций подклетов с обеспечением требуемого паропроницания, гидроизоляции и защитой стен от атмосферных осадков и при создании требуемых метеорологических условий инженерными системами можно достичь экономии тепловой энергии в храмах порядка 2,5–5 % от общих теплопотерь здания.

При температуре внутреннего воздуха в подклетах (за пределами хранилищ овощей) tв = 12–16 °С и относительной влажности jв = 50–75 % значение температуры точки росы tт.р. = 3,0–11,5 °С, что приводит к постоянному выпадению конденсата на стенах и откосах в холодный период года. В результате изменяются теплозащитные характеристики материалов в конструкциях пола, стен, оконных откосов и на их поверхности, образуется плесень, грибок, портятся фрески и роспись.

Повышение температуры на поверхности стен будет способствовать сохранности фресок и художественной росписи интерьера подклетов.

В процессе восстановления или реконструкции основными мероприятиями для предотвращения конденсации водяных паров на поверхностях наружных стен помещений храмов являются установка дополнительного ряда оконных рам (тройное остекление) и подача теплого воздуха от нагревательных приборов систем отопления в объем помещения и к окнам.

Собор Святого Александра Невского в Нижнем Новгороде

Рисунок 3.

Собор Святого Александра Невского в Нижнем Новгороде

Православные храмы круглогодичного действия в регионах с расчетной температурой наружного воздуха tн ≤ –25 °С имеют в основном однослойную конструкцию стен из глиняного обыкновенного кирпича толщиной в пределах dст = 0,9–1,54 м.

В восстановленных и реконструированных храмах Владимирской, Пермской, Ивановской и Нижегородской областей оконные блоки с двойными деревянными раздельными переплетами располагаются на расстоянии dок = 0,10–0,25 м от наружной поверхности стены.

Температурное поле наружной стены вблизи оконных проемов изменяется. Это изменение тем значительнее, чем толще стена и чем меньше расстояние между оконными переплетами. При этом температура внутренней поверхности стены несколько повышается по мере приближения к углу проема, а на откосах проема резко понижается.

Низкие температуры на поверхности откосов оконных проемов вызывают дополнительные теплопотери через оконные проемы, возрастающие с увеличением толщины стены. Однако при расчетах отопления эти дополнительные теплопотери также не учитываются, что приводит к заниженным значениям расчетных теплопотерь через окна в церквях.

Соотношение площадей остекления храмов к общей площади ограждающих конструкций составляет:

Поэтому расчетные мощности систем отопления церквей оказываются на 10–12 % меньше от требуемых.

При температуре внутреннего воздуха в церквях tв = 12–14 °С и относительной влажности jв = 30–60 % значение температуры точки росы tт.р. = 2,0–6,6 °С, что приводит к постоянному выпадению конденсата на откосах. В результате изменяются теплозащитные характеристики материалов в конструкциях оконных откосов и на их поверхности, образуется плесень, грибок, портятся фрески, роспись и станковая живопись.

В результате экспериментальных исследований в вышеприведенных храмах Нижнего Новгорода и Нижегородской области получены величины снижения теплопотерь для двойных оконных переплетов dок = 0,15 м при переносе оконных коробок в процессе реконструкции из положения d1 / dо = 0,862 (с потерями теплоты Qок1) в положение d2 / dо = 0,345 (с теплопотерями Qок2) в стенах толщиной dо = 1,04–1,16 м и температурах tв = 14 °С, tн= –27 ÷ –30 °С.

Полученные опытные данные приведены в табл. 2.

Таблица 1
Относительное уменьшение теплопотерь через ограждающие конструкции подклетов храмов
Наименование храма Общие потери теплоты Qо, кВт Снижение потерь теплоты ΔQ = Qпод1 – Qпод2, кВт Относительное уменьшение потерь теплоты, %
ΔQ / Qпод2 ΔQ / Qo
1 2 3 4 5
Спасская церковь 133,5 3,22 20 2,4
Собор Святого Алек-сандра Невского 403,43 6,6 11 1,6
Крестовоздвижен-ский собор 350,9 7,897 15,3 2,25
Церковь Святой Троицы 28,7 0,553 14,4 1,9
Троицкая церковь 57,024 1,277 16,8 2,2
Таблица 2
Относительное уменьшение теплопотерь через зону оконного откоса церквей
Наименование храма Общие потери теплоты Qо, кВт Снижение потерь теплоты ΔQ = Qок1 – Qок2, кВт Относительное уменьшение потерь теплоты, %
ΔQ / Qок2 ΔQ / Qo
1 2 3 4 5
Спасская церковь 133,5 7 895 25,6 5,9
Собор Святого Алек-сандра Невского 403,43 23 633 29 5,9
Преображенский собор 150,9 10 600 28,9 7
Церковь Святой Троицы 28,7 1 000 17,8 3,5
Троицкая церковь 57,024 3 607 27,6 6,3

Из этого следует, что только за счет рационального расположения оконного переплета можно достичь экономии тепловой энергии в храмах порядка 3,5–7 % от общих теплопотерь здания.

Экономия тепловой энергии в храмах только за счет вышеперечисленных мероприятий составляет порядка 10–12 % от общих теплопотерь здания. К этому следует добавить, что уменьшенная величина зоны возможной конденсации на поверхностях откосов будет способствовать сохранности фресок, художественной росписи и интерьера храмов.

Поделиться статьей в социальных сетях:

Статья опубликована в журнале “АВОК” за №6'2006

распечатать статью распечатать статью


Статьи по теме

Реклама
Реклама на нашем сайте
Яндекс цитирования

Подписка на журналы

АВОК
АВОК
Энергосбережение
Энергосбережение
Сантехника
Сантехника
Онлайн-словарь АВОК!


Реклама на нашем сайте