Некоммерческое
партнерство
инженеров
Инженеры по отоплению, вентиляции, кондиционированию воздуха, теплоснабжению и строительной теплофизике
(495) 984-99-72 НП "АВОК"

(495) 107-91-50 ООО ИИП "АВОК-ПРЕСС"

АВОК ассоциированный
член
Summary:

Особенности центробежных самовсасывающих насосов

Features of Centrifugal Self-Priming Pumps

S. A. Fedorov, Chief Pumps Specialist, Wilo RUS

Keywords: centrifugal pump, pressure, self-priming centrifugal pump, head, impeller
Centrifugal pumps are widely used for pumping liquids, the level of which lies below the pump. The use of standard (or normally suction) pumps requires pre-filling the suction line (or pumping the air column with a vacuum pump), installing a special valve on the submerged end of the pipe, and also continuously monitoring the suction line. The use of self-priming pumps greatly simplifies the process.

Описание:

Центробежные насосы широко используются для откачки жидкостей, уровень которых лежит ниже насоса. Использование стандартных (или нормально всасывающих) насосов требует предварительной заливки линии всасывания (или откачки воздушного столба с помощью вакуумного насоса), установки специального клапана на погруженном в воду конце трубы, а также постоянного контроля линии всасывания. Применение самовсасывающих насосов намного упрощает процесс. 

Особенности центробежных самовсасывающих насосов

Центробежные насосы широко используются для откачки жидкостей, уровень которых лежит ниже насоса (рис. 1). Однако в начальный момент насос и жидкость разделены воздушной полостью. Напомним, что в центробежных насосах кинетическая энергия вращающейся жидкости Ek = ρυ2/ 2 (ρ – плотность, υ – скорость) преобразуется в потенциальную энергию сжатия Ep. Плотность воздуха при нормальных условиях примерно в 800 раз меньше, чем плотность воды. Напор насоса, величина которого пропорциональна плотности, при перекачке воздуха будет также почти на три порядка ниже. При попадании газа в центробежный насос его напор падает почти до нуля и процесс перекачки останавливается.

Применение мембранных технологий в водоподготовке

Поэтому использование стандартных (или нормально всасывающих) насосов требует предварительной заливки линии всасывания (или откачки воздушного столба с помощью вакуумного насоса), установки специального клапана на погруженном в воду конце трубы (foot valve), а также постоянного контроля линии всасывания. Атмосферное давление над жидкостью при этом обеспечивает достаточные условия для работы до глубин порядка 6–8 м.

Применение центробежных насосов в режиме откачки из емкости снизу

Рисунок 1.

Применение центробежных насосов в режиме откачки из емкости снизу

Применение самовсасывающих насосов намного упрощает процесс. Самовсасывающие насосы могут откачивать небольшие объемы газа, а после завершения цикла дегазации на входе работать как обычные насосы. К классу самовсасывающих относится многочисленная группа объемных насосов (поршневые, винтовые, мембранные, шестеренные и т. д.) [1], а также эжекторные и периферийные насосы (side channel) [2].

Самовсасывающий центробежный насос с портом рециркуляции с напорной стороны

Рисунок 2.

Самовсасывающий центробежный насос с портом рециркуляции с напорной стороны: 1 – рабочее колесо, 2 – рабочая камера, 3 – рециркуляционная камера, 4 – порт рециркуляции, 5 – выходной патрубок

Центробежные насосы после небольших изменений в конструкции также могут получить заветные самовсасывающие свойства, например, если в корпус стандартного насоса устанавливается рециркуляционная камера 3 достаточного объема (рис. 2).

Перед началом работы в самовсасывающий насос заливается жидкость. Это обязательное условие. Сразу после старта имеющаяся в насосе вода откачивается из области перед рабочим колесом: в этой зоне создается разрежение, и воздух засасывается внутрь рабочего колеса. Смесь жидкости и газа раскручивается лопатками рабочего колеса и выбрасывается из рабочей камеры 2 в рециркуляционную камеру 3 (рис. 2). После этого скорость потока резко падает, вода стекает вниз, тогда как воздушная полость остается в верхней части насоса. Поскольку в рециркуляционной камере создается некоторый напор, воздух выдавливается из насоса через выходной патрубок 5, а вода снова поступает в рабочую камеру через порт 4. Процесс продолжается вплоть до полной дегазации входного тракта и самого насоса. Далее самовсасывающий насос работает в обычном режиме стандартного насоса с минимальными потоками в камере рециркуляции.

Конструкции самовсасывающих центробежных насосов могут отличаться. Так, рециркуляционный порт может находиться как со стороны периметра рабочей камеры, т. е. с напорной стороны (рис. 2), так и со стороны входа в рабочее колесо (рис. 3) [3].

Самовсасывающий центробежный насос с портом рециркуляции на входе в рабочее колесо

Рисунок 3.

Самовсасывающий центробежный насос с портом рециркуляции на входе в рабочее колесо: 1 – рабочее колесо, 2 – рабочая камера, 3 – камера рециркуляции, 4 – порт рециркуляции

Рециркуляционная камера может размещаться как вокруг рабочей камеры, так и наверху. Но в любом случае габариты самовсасывающих насосов заметно больше стандартных.

Рабочее колесо может быть как закрытым, так и полуоткрытым. В первом случае можно получить больший напор, но насос, как правило, предназначен для перекачки чистых или слабозагрязненных жидкостей. Во втором случае насос способен перекачивать сильнозагрязненные жидкости с крупными частицами.

На рис. 4 представлено поперечное сечение самовсасывающего центробежного насоса. В насосе используется полуоткрытое рабочее колесо со сменной накладной пластиной. Насос позволяет перекачивать сильно загрязненные жидкости с диаметром твердых включений до 75 мм в широком интервале подач и температур.

Самовсасывающий насос

Рисунок 4.

Самовсасывающий насос: 1 – входной патрубок с обратным клапаном, 2 – выходной патрубок, 3 – камера рециркуляции, 4 – входная камера, 5 – рабочее колесо, 6 – накладная пластина, 7 – торцевое уплотнение

Входной патрубок самовсасывающих насосов располагается в верхней части насоса и оснащен обратным клапаном. Такая конструкция позволяет оставлять в насосе достаточный для следующего включения объем воды.

Кроме обычных для стандартных насосов характеристик (зависимости напора, эффективности, мощности и NPSHr от подачи) важным и обязательным для самовсасывающих насосов параметром является время дегазации tдег (режим priming). Это важный параметр, определяющий нормальную работу насоса на стадии дегазации. В этот период большая часть механической энергии передается жидкости внутри насоса, и она быстро нагревается. Часть жидкости может при этом испариться, а условия нормальной работы уплотнения могут нарушиться. Поэтому при значительном превышении указанного производителем времени дегазации насос следует выключить и разобраться с причинами задержки. Для подобных насосов время работы в режиме дегазации, как правило, не должно превышать нескольких минут. Время дегазации на заводе измеряется при диаметре трубы на входе, равном диаметру входного патрубка. При использовании других диаметров и значительных горизонтальных участков труб на входе время дегазации пересчитывается с помощью формул, обычно содержащихся в инструкции.

Для диагностики работы желательно установить вакуумметры на входной линии. Обычные диапазоны давлений в режиме дегазации для этих насосов – минус 500–600 мм рт. ст.

Критическим параметром для работы самовсасывающего насоса является величина зазора между краями лопаток рабочего колеса и языком рабочей камеры (рис. 5). Эффективность работы насоса с открытым рабочим колесом также во многом определяется зазором между плоскостью лопаток рабочего колеса, прилегающей к накладной пластине, и плоскостью пластины (рис. 4). При увеличении зазоров выше оптимальных значений эффективность насоса падает, а время дегазации растет. В некоторых насосах конструкция позволяет регулировать величину данных зазоров.

Величина зазора

Рисунок 5.

Величина зазора между краем рабочего колеса 1 и языком рабочей камеры 2 – важный параметр эффективной работы насоса

На процесс дегазации сильно влияет наличие даже небольших отверстий и щелей в линии всасывания. Например, работу насоса, выполняющего за 30 секунд дегазацию трубы диаметром DN 65 и глубиной 3 м, может свести на нет отверстие площадью порядка 0,1 см2 [4].

По этой же причине в самовсасывающих насосах, как правило, не используются сальниковые уплотнения, так как проникновение воздуха через сальники при работе в режиме дегазации снижает эффективность процесса.

Необходимым условием бескавитационной работы самовсасывающих насосов (как и для стандартных насосов) является соотношение (1):

                          NPSHa > NPSHr,       (1)

где

NPSHa – напор жидкости на входе в насос,

NPSHr – заводская характеристика порога кавитации (определяется с запасом по отношению к NPSHr 3%).

Величина NPSHa в данном случае вычисляется по формуле (2):

              NPSHa = HатмHпарHтрHст,           (2)

где

Hатм – напор атмосферы,

Hпар – напор паров жидкости,

Hтр – потери напора на трение,

Hст – статический перепад высот на входе.

Все слагаемые имеют значение напора или потери напора при движении жидкости от входа в трубу до входа в насос (рис. 6).

Работа самовсасывающего насоса

Рисунок 6.

Работа самовсасывающего насоса

Соотношение (1) должно соблюдаться в течение всего процесса откачки, при этом уровень жидкости, температура, атмосферное давление, подача и, следовательно, потери на трение могут меняться. При работе вблизи максимальных глубин откачки такое изменение параметров может привести к кавитации и срыву кривой напора насоса H (Q) (рис. 9).

Работа самовсасывающего насоса

Рисунок 9.

Характеристические кривые насоса при увеличении глубины Hст

При расчете самовсасывающего насоса для требуемой подачи Qn вычисляется общий динамический напор Hd, включающий в себя общий перепад высот и общие потери. На рис. 7 представлена схема подъема жидкости насосом 2 из емкости 1 (максимальная глубина откачки H1) через насыпь высотой H2 в точку 3.

Применение самовсасывающего насоса

Рисунок 7.

Применение самовсасывающего насоса

Необходимый напор насоса должен быть не меньше, чем:

                         H = H1 + H2 + Hтр,       (3)

где

Hтр – сумма всех потерь напора на элементах системы от точки 1 до точки 3.

В случае, если в точке 3 жидкость должна иметь некоторую энергию (например, для смыва или разрушения породы), в правой части уравнения (3) нужно добавить необходимую величину H3.

На рис. 8 представлена кривая зависимости Qв потока откачиваемого воздуха при дегазации в зависимости от глубины откачки Hст некоторого самовсасывающего насоса. Максимальная глубина откачки Hм насоса – теоретическая величина, которая определяется как точка пересечения кривой Qв с горизонтальной осью. На практике Нм зависит не только от степени разрежения, но также от атмосферного давления, плотности жидкости, концентрации растворенных в ней газов, характера течения жидкости в емкости (например, появление воронок) и т. д.

Зависимость скорости откачки воздуха от глубины

Рисунок 8.

Зависимость скорости откачки воздуха от глубины Hст

Поскольку насос может включаться при одном и отключаться при другом уровне жидкости, очевидно, что рабочие величины Hст должны быть заведомо меньше Hм. Кроме того, нужно учитывать, что при увеличении Hст и подачи Q величина NPSHa снижается (см. уравнение 2). Это может привести к кавитации и срыву характеристики насоса H (Q) в правой части кривой (рис. 9).

На рис. 9 представлена характеристическая кривая некоторого самовсасывающего насоса (синяя кривая 1) и набор кривых H (Q) (красные кривые 2) того же насоса при увеличении глубины откачки Hст. Срыв характеристик (падающие участки кривых 2) происходит из-за кавитации при нарушении условия (1) [5].

При эксплуатации самовсасывающих насосов необходимо учитывать низкий напор на выходе насоса в течение периода дегазации. На рис. 10 представлен график зависимости давления самовсасывающего насоса от времени. Период дегазации (отрезок от точки 0 до точки 1) сменяется периодом роста давления (от точки 1 до точки 2), когда жидкость начинает заполнять объем насоса. Далее, после точки 2, напор насоса стабилизируется.

Зависимость давления

Рисунок 10.

Зависимость давления Pвых самовсасывающего насоса от времени работы t после старта

В схемах без запорных элементов (рис. 11, а – схема со свободным сливом) воздух на стадии дегазации может свободно выходить из напорного патрубка, и никаких проблем не возникает. На схеме 11, б на выходе установлен обратный клапан 1, для открытия которого давления насоса в режиме дегазации, как правило, не хватает. Проблема решается установкой байпасной линии 2 (рис. 11, в). В этом случае воздух свободно стравливается через байпас при закрытом обратном клапане. После выхода на нормальный режим работы обратный клапан открывается, но часть потока продолжает через байпас сливаться обратно в исходную емкость.

Схемы работы самовсасывающих насосов

Рисунок 11.

Схемы работы самовсасывающих насосов

Типичными ошибками являются примеры, представленные ниже. На рис. 12,а вода, попавшая в напорный трубопровод (в области эллипса), не даст насосу при следующем включении завершить период дегазации. На рис. 12,б представлена схема откачки жидкости из цистерны. Жидкость, попавшая в ловушку перед насосом (область эллипса), при первом включении заблокирует процесс дегазации в дальнейшем.

Блокировка процессов дегазации и откачки

Рисунок 12.

Блокировка процессов дегазации и откачки

Поток через байпасную линию даже небольшого диаметра при больших напорах может быть достаточно большим, что снижает эффективность и меняет характеристики насоса. Решением может быть установка запорного вентиля как можно с меньшим гидравлическим сопротивлением (например, шаровой вентиль). Но более оптимальным выглядит установка автоматического вентиля дегазации 5 (рис. 13), открытого в нормальном состоянии и закрывающегося при попадании внутрь воды под напором.

При перекачке сильнозагрязненной жидкости ее скорость должна быть достаточна для подъема и перемещения частиц, а диаметр байпаса (рис. 13) достаточно большим, чтобы обеспечить дегазацию и не быть заблокированным грязью. Слив байпаса 6 нужно размещать как можно дальше от всасывающей трубы 1, чтобы жидкость в емкости не насыщалась воздухом.

Схема с установкой автоматического вентиля дегазации

Рисунок 13.

Схема с установкой автоматического вентиля дегазации: 1 – линия всасывания, 2 – насос, 3 – обратный клапан, 4 – напорный патрубок, 5 – автоматический вентиль, 6 – байпас

Мобильные самовсасывающие центробежные насосы с приводом от дизельных и бензиновых двигателей широко используются в полевых условиях (рис. 14). Стандартные фитинги и шланги позволяют оперативно включиться в работу.

Самовсасывающий насос на тележке

Рисунок 14.

Самовсасывающий насос на тележке

В целом самовсасывающие насосы, имея большие габариты и меньшую эффективность по сравнению с нормально всасывающими насосами, обеспечивают надежную работу при откачке даже сильнозагрязненных жидкостей с глубины до 8 м и незаменимы в экстренных случаях.

Литература

  1. Volk M. Pump characteristics and applications, 2005.
  2. Sterling Fluid Systems B. V., Basic principles for the design of centrifugal pump installations, 2003.
  3. Karassik I. J., McGuire T. Centrifugal pumps, 1998.
  4. Petersen R. Self-priming pumps: it’s the system // Pump Handbook Series. – V. 1 – P. 205–208.
  5. The Gorman-Rupp company, Pump application manual, 2003.
купить online журнал подписаться на журнал
Поделиться статьей в социальных сетях:

Статья опубликована в журнале “Сантехника” за №1'2018

распечатать статью распечатать статью PDF pdf версия


Реклама
Реклама на нашем сайте
Яндекс цитирования

Подписка на журналы

АВОК
АВОК
Энергосбережение
Энергосбережение
Сантехника
Сантехника
Онлайн-словарь АВОК!


Реклама на нашем сайте