Некоммерческое
партнерство
инженеров
Инженеры по отоплению, вентиляции, кондиционированию воздуха, теплоснабжению и строительной теплофизике
(495) 984-99-72 НП "АВОК"

(495) 621-80-48 Секретарь (тел./факс) ООО ИИП "АВОК-ПРЕСС"
(495) 107-91-50

АВОК ассоциированный
член
Описание:

Продолжая цикл статей о новых подходах к повышению энергоэффективности зданий, расскажем, как можно минимизировать энергопотребление строящихся и реконструируемых зданий благодаря энергоэффективным вентилируемым ограждающим конструкциям (ЭВОК) с активной рекуперацией теплового потока.

Создание наружных ограждающих конструкций с повышенным уровнем теплозащиты

Продолжая1 цикл статей о новых подходах к повышению энергоэффективности зданий, подготовленный специалистами НИИСФ, расскажем, как можно минимизировать энергопотребление строящихся и реконструируемых зданий благодаря энергоэффективным вентилируемым ограждающим конструкциям (ЭВОК) с активной рекуперацией теплового потока.

Российские нормы по теплозащите

В начале 1990‑х годов в России, аналогично США (см. справку), основное внимание было уделено повышению теплотехнических характеристик ограждающих конструкций зданий, что закреплялось в новой на тот момент редакции СНиП П‑3–79* «Строительная теплотехника» (1995 год).

Если в предыдущей редакции данного нормативного документа минимальное приведенное сопротивление теплопередаче стен для условий Москвы составляло 1,0 м2•°С/Вт, то на первом этапе изменений оно должно было увеличиться до 1,9 м2•°С/Вт, а на втором – до 3,13 м2•°С/Вт, т.е. более чем в 3 раза. И это было осуществ­лено.

В дальнейшем при разработке актуализированной редакции СНиП 23-02–2003 (СП 50.13330.2012 «Свод правил "Тепловая защита зданий"», 2012 год) дальнейшее повышение минимально регламентируемых теплотехнических характеристик ограждающих конструкций было ограничено, что, к слову, до сих пор вызывает бурную полемику.

Системы активного энергосбережения

В настоящее время для достижения норм по теплозащите в непрозрачных наружных ограждающих конструкциях (стенах и крышах) используется значительный слой утеплителя, что в сегодняшних условиях не всегда экономически и энергетически целесообразно [3].

Именно поэтому в последние годы все большее внимание, в том числе и в нашей стране [4], уделяется новой идеологии, которая получила общее название «системы активного энергосбережения» (САЭ).

В общем случае к САЭ относятся системы, использующие вторичные энергоресурсы, нетрадиционные и возобновляемые источники энергии, а также авторегулирование при изменении условий – как снаружи, так и внутри зданий.

Несмотря на то, что САЭ появились не так давно, уже сегодня можно привести примеры зданий, построенных с использованием ряда технологий, входящих в эту идеологию.

Система термоактивных слоев

Одно из последних интересных зданий, возведенных с использованием системы активного энерго­сбережения, построено в Германии (рис. 1) на границе с Данией в г. Шлезвиг в конце 2011 года. Здание было построено с участием фирмы Schüco и задумывалось как полностью соответствующее определению пассивного дома. Кроме того, этот дом является частью программы Schüco «Концепция "2 градуса"»2, и применяемая в нем система термоактивных функциональных слоев (рис. 2) направлена на недопущение глобального изменения климата.

Пассивный дом с термоактивными стенами в г. Шлезвиг (Германия)

Рисунок 1.

Пассивный дом с термоактивными стенами в г. Шлезвиг (Германия)

Концепция сменных слоев

Рисунок 2.

Концепция сменных слоев

Концепция здания состоит в том, что каждая из стен оборудована четырьмя функциональными слоями (рис. 3).3 При этом слой с установленными фотоэлектрическими панелями является неподвижным, остальные могут перемещаться, заменяя или дополняя друг друга. Открывание и закрывание слоев происходит автоматически по заданной программе в зависимости от времени суток, погоды. Они также могут заменяться и в ручном режиме – по желанию обитателей.

Внешний вид: а) функциональные слои; б) неподвижный фотоэлектрический слой

Рисунок 3.

Внешний вид: а) функциональные слои; б) неподвижный фотоэлектрический слой

Помимо указанных технологических новинок в здании применена децентрализованная система вентиляции с функцией рекуперации тепла, а также теплохладоаккумуляция с использованием материалов с фазовым переходом (рис. 4).

Работа системы вентиляции: а) ночью; б) днем

Рисунок 4.

Работа системы вентиляции: а) ночью; б) днем

В системе используется встроенная вентиляция с использованием материалов, которые могут за счет фазового перехода аккумулировать и отдавать тепло или холод. В процессе охлаждения в ночное время материалы с фазовым переходом охлаждаются до более низкого уровня температур и восстанавливаются (заряжаются). Днем холодные материалы с переходом фазы забирают энергию у поступающего теплого воздуха. За счет этого воздух охлаждается, а система с использованием материалов с фазовым переходом снова разряжается.

Используемая в здании специальная система фотоэлектрических панелей ProSol TF с перфорацией помимо выработки электроэнергии может пропускать в помещение естественный свет.

Помимо этого предусмотрена система мониторинга, контролирующая температуру и влажность воздуха, освещенность, содержание СО2 и в соответствии с этим управляющая функциональными слоями. К сожалению, пока не опубликованы данные мониторинга эффективности этого здания. Однако представляется, что это сооружение гораздо ближе к системе активного энергосбережения, чем к классу пассивных зданий.

Пока говорить об окупаемости подобных пилотных проектов сложно, поскольку в них используются абсолютно новые концепции, технологии и материалы, которые при массовом производстве и применении становятся значительно дешевле.

Снижение теплопотерь старого жилого фонда

При реализации Федерального закона № 261‑ФЗ «Об энергосбережении…» в области строительства возникает основная проблема – снижение теплопотерь из помещений зданий, построенных в нашей стране в прошлом веке. Они и морально, и физически устарели. Эти здания, которых было построено по некоторым оценкам более 12 млрд м2 во всех климатических регионах страны, являются источником огромных энергетических потерь через ограждающие конструкции, а также за счет неэффективных инженерных систем.

В середине 2000‑х годов в ряде регионов была запущена программа по реновации и санации жилых зданий, построенных в 60–70‑е годы прошлого века. Основные работы предполагали повысить уровень теплозащиты стен за счет различных вариантов наружного утепления, замены или ремонта окон и некоторых коммуникаций. Предполагалось, что за счет этих мероприятий возможно снизить расходы на эксплуатацию жилых помещений на 25–30%.

К сожалению, мониторинг реконструированных домов показал значительно меньший энергетический эффект. Например по результатам обследований, проведенных Мосгосэкспертизой и другими заинтересованными организациями, снижение потребления энергии в них не превышало 10%. Это связано как с неудачными схемами реконструкции, качеством работ, так и с неэффективными дешевыми материалами и решениями, использованными при реконструкции.

Многолетний достаточно положительный опыт строительства энергоэффективных зданий и реконструкции существующих с применением некоторых технологий активного энергосбережения имеется в Республике Беларусь [5, 6]. В последние годы в этой стране реализовано довольно много интересных проектов, а с 2014 года (на основе наработанного опыта) началось массовое строительство подобных зданий и целых районов.

Разработка САЭ в России

Исследования, проведенные в НИИ строительной физики в 2011–2013 годах [7, 8], способствовали разработке предложений по использованию технологий и элементов САЭ в ограждающих конструкциях, которые позволят значительно повысить энергетическую эффективность и комфортность существующих зданий в процессе проведения их тепловой санации при реконструкции и ремонте.

Основой данных предложений являются энергоэффективные вентилируемые ограждающие конструкции (ЭВОК) с активной рекуперацией теплового потока, которые могут быть широко использованы для строительства, капитального ремонта и реконструкции зданий и сооружений с минимальным энергопотреблением.

Предлагаемые ограждающие конструкции фактически становятся приточными устройствами системы вентиляции с последующей активной рекуперацией тепла, уходившего ранее в атмосферу через наружные ограждения зданий. Влажностный режим и теплотехническая однородность наружных ограждающих конструкций зданий также улучшаются.

Одно из наиболее актуальных направлений развития энерго­сбережения в строительной отрасли – создание ограждающих конструкций с повышенным уровнем теплозащиты за счет активной рекуперации теплового потока. Производство таких изделий должно составлять основу строительной индустрии, а их применение позволит ускорить возведение объектов, снизить стоимость, повысить качество и долговечность зданий, а также комфортность микроклимата помещений.

Широкая номенклатура конструкций, выпускаемых отечественными предприятиями крупнопанельного домостроения, дает возможность проводить многовариантное проектирование, использовать в массовом строительстве конструкции с очень высокими потребительскими свойствами: надежностью, долговечностью, экологичностью, эстетичностью. То же относится и к массовому малоэтажному жилищному строительству, которое очень активно развивается в настоящее время в российских городах и других поселениях.

Энергоэффективные вентилируемые ограждающие конструкции, утилизируя уходящее тепло, возвращают его в помещение, обеспечивая постоянный комфортный воздухообмен, удобны в эксплуатации и являются перспективными для обеспечения энергосбережения с использованием вторичных энергоресурсов и возобновляемых источников энергии.

СПРАВКА

Системные программы в области энергосбережения в строительстве в США появились после энергетического кризиса в середине 70-х годов прошлого века [1]. В первом законодательном документе в этой облас­ти – Energy Policy Act 1992, утвержденном конгрессом США в 1992 году, сформулирована доктрина о том, что потребление энергоресурсов на теплоснабжение и эксплуатацию зданий должно оставаться на существующем в тот период уровне при возрастающем объеме строительства. Стратегическими направлениями реализации концепции документа были названы не только совершенствование инженерного оборудования зданий, внедрение в строительство новых технологий и использование возобновляемых источников энергии, но и существенное повышение теплозащитных характеристик ограждающих конструкций зданий.

В последней редакции данного закона (принятой в 2005 году [2]) констатировано, что поставленная задача успешно выполнена на территории страны, несмотря на значительное увеличение объемов строительства.

Навесные фасадные системы с воздушным вентилируемым зазором и активной рекуперацией теплового потока

Некоторые варианты разработанных конструкций в рамках исследований, выполненных в НИИСФ в 2011–2012 годах, приведены в [7].

Одним из наиболее распространенных вариантов реконструкции ограждающих конструкций существующих зданий является использование навесных фасадных систем с воздушным вентилируемым зазором (НФС с ВВЗ). Именно такой вариант является необычайно удобным для преобразование в ЭВОК.

В частности, одной из проблемных зон в многоэтажных зданиях являются остекленные лоджии. Возможна модернизация этих элементов здания с применением ЭВОК, обеспечивающая (помимо значительного снижения теплопотерь через остекленные элементы лоджий) их использование в качестве элемента вентиляционной системы помещений (рис. 5).

Схема энергоэффективной вентилируемой ограждающей конструкции здания с децентрализованной приточно-вытяжной системой вентиляции (с использованием пространства лоджии)

Рисунок 5.

Схема энергоэффективной вентилируемой ограждающей конструкции здания с децентрализованной приточно-вытяжной системой вентиляции (с использованием пространства лоджии): а) зимний режим; б) летний режим

1 – переход в вентшахту выбросного воздуха
2 – наружная облицовка фасада
3 – теплоотражающий экран
4 – движение приточного воздуха
5 – рекуператор-теплообменник
6 – вытяжная решетка
7 – приточная решетка
8 – секции теплохладоаккумуляторов
9 – вентшахта приточного воздуха с поддавливанием ветровым дефлектором на крыше
10 – вентшахта выбросного воздуха с вытяжным дефлектором на крыше

Большинство производителей навесных фасадных систем с вентилируемым воздушным зазором имеют различные варианты использования наружных облицовочных фасадных панелей (фиброцементные и асбестоцементные плиты с декоративным покрытием, алюминиевые панели, многие другие материалы) достаточно большого размера, с небольшим весом и внутренним теплоотражающим слоем из легированной алюминиевой фольги.

Совместно с некоторыми фирмами - производителями НФС с ВВЗ специалистами НИИСФ разрабатываются варианты ЭВОК для использования в новом строительстве, капитальном ремонте и реконструкции зданий различного назначения (рис. 6). В настоящее время институт совместно с некоторыми компаниями – производителями готовит серию лабораторных испытаний эффективности новых конструкций.

Рисунок 6 а.
Вариант ЭВОК с креплением в межэтажные перекрытия: навесная фасадная система NORDEX с одним теплоотражающим экраном;

1 – вертикальная направляющая
2 – декоративная облицовка
3 – ригель крепления облицовки
4 – кронштейн
5 – минераловатный утеплитель
6 – ограждающая кладка
7 – плита межэтажного перекрытия
8 – наружный теплоотражающий экран
9 – внутренний теплоотражающий экран

Рисунок 6 б.
Вариант ЭВОК с креплением в межэтажные перекрытия: навесная фасадная система с вентилируемым воздушным зазором с двумя теплоотражающими экранами

1 – кронштейны каркаса фасадной системы NORDEX
2 – вертикальные направляющие каркаса фасадной системы NORDEX
3 – горизонтальные профили фасадной системы NORDEX для крепления декоративного экрана (облицовки
4 – декоративный экран (облицовка)
5 – плита межэтажного перекрытия
6 – канал сбора воздуха
7 – основная стена (R около 1 м2•°C/Вт)
8 – активный поток воздуха
9 – воздухонепроницаемый теплоотражающий экран (основной, наружный)
10 – распределительный канал потока воздуха

Результаты испытаний сегментов вентилируемых ограждающих конструкций зданий

Разработан универсальный стенд для аэродинамических и теплотехнических испытаний сегментов вентилируемых ограждающих конструкций зданий, который значительно упрощает юстировку параметров воздушного потока в ЭВОК, а также последующие теплотехнические испытания.

В первую очередь подходящими объектами для внедрения энергоэффективных вентилируемых ограждающих конструкций, по нашему мнению, являются детсады, школы, поликлиники, культурно-массовые и общественные здания, где, помимо повышения теплозащитных качеств ограждающих конструкций, необходимо обеспечить комфортное интенсивное вентилирование помещений во время постоянного присутствия людей.

Испытания4, проведенные в 2013 году в климатической камере НИИСФ, показали, что для ЭВОК возможно повысить энергетическую эффективность в несколько раз относительно существующих современных ограждающих конструкций и действующих норм. Были получены коэффициенты рекуперации теплового потока:

  • для светопрозрачных ограждающих конструкций выше 90%,
  • для непрозрачных ограждающих конструкций выше 95%.

Доказана и возможность ступенчатого повышения эффективности за счет размещения и последовательного действия двух и более теплоотражающих экранов/слоев в зоне действия воздушной завесы.

Это позволяет предположить возможность практически полной рекуперации теплового потока через ЭВОК, включая светопрозрачные конструкции. А это, соответственно, открывает новые перспективы для строительства и реконструкции зданий (сооружений, теплиц) с большим коэффициентом остекления.

В настоящее время НИИСФ проводит многочисленные работы по подготовке разработанных энергоэффективных вентилируемых ограждающих конструкций к опытному внедрению на различных объектах Москвы, Московской области, Республики Башкортостан. Институт готов к сотрудничеству с региональными инвесторами, проектными организациями и индустриальными партнерами по внедрению энергоэффективных вентилируемых ограждающих конструкций с активной рекуперацией теплового потока для строительства и реконструкции зданий и сооружений с минимальным энергопотреблением.

Литература

  1. Шубин И.Л., Спиридонов А.В. Законодательство по энергосбережению в США, Европе и России. Пути решения» // Вестник МГСУ. 2011. № 3. Т. 1.
  2. The Energy Policy Act of 2005 (Pub.L. 109–58), the United States Congress, July 29, 2005.
  3. Шубин И.Л., Спиридонов А.В. Проблемы энергосбережения в российской строительной отрасли //  «Энергосбережение». 2013. № 1.».
  4. Протокол № 1/2014 расширенного заседания Объединенного научно-технического совета по вопросам градостроительной политики и строительства города Москвы (совместно с Межведомственным экспертным советом по энергосбережению в строительстве на территории города Москвы) по теме: «Градостроительная политика города Москвы в области повышения энергетической эффективности городского строительства». г. М., 21 февраля 2014.
  5. Данилевский Л.Н. Принципы проектирования и инженерное оборудование энергоэффективных жилых зданий. Минск : БизнесСофсет, 2011. 374 с.
  6. Данилевский Л.Н. Опыт строительства энергоэффективных зданий в Республике Беларусь. Технологии проектирования и строительства энергоэффективных зданий Passive House : Материалы 7‑й конференции по пассивным домам и зданиям с низким энергопотреблением 11–12 апреля 2012 года М., 2012.
  7. Ахмяров Т.А., Беляев В.С., Спиридонов А.В., Шубин И.Л. Система активного энергосбережения с рекуперацией тепла // Энергосбережение. 2013. № 4.
  8. Ахмяров Т.А., Спиридонов А.В., Шубин И.Л. Новые принципы проектирования и оценки наружных ограждающих конструкций с использованием рекуперации тепла и других технологий «активного» энергосбережения // Жилищное строительство. 2014. № 6.

 

1 См. статью «Новый подход к повышению энергоэффективности зданий» (ж. «Энергосбережение», № 5, 2014) где описаны процессы активной рекуперации теплового потока в ЭВОК.

2 Согласно концепции считается, что если среднегодовая температура атмосферы повысится еще на 2 °С, то на Земле наступят необратимые климатические изменения. Данная программа активно продвигается для создания новых энергоэффективных решений, предотвращающих изменения климата. Программа поддерживается не только фирмой Schüco, но и Международным энергетическим агентством и Европейским союзом.

3 На сегодняшний день четыре – это максимально возможное число слоев в данной конструкции.

4 Более подробно результаты экспериментов будут представлены в последующих публикациях.

купить online журнал подписаться на журнал
Поделиться статьей в социальных сетях:

Статья опубликована в журнале “Энергосбережение” за №6'2014

распечатать статью распечатать статью PDF pdf версия


Реклама
Реклама на нашем сайте
Rambler's Top100 Rambler's Top100 Яндекс цитирования



Кондиционирование, отопление, вентиляция

Подписка на журналы

АВОК
АВОК
Энергосбережение
Энергосбережение
Сантехника
Сантехника
Онлайн-словарь АВОК!


Реклама на нашем сайте