Некоммерческое
партнерство
инженеров
Инженеры по отоплению, вентиляции, кондиционированию воздуха, теплоснабжению и строительной теплофизике
(495) 984-99-72 НП "АВОК"

(495) 621-80-48 Секретарь (тел./факс) ООО ИИП "АВОК-ПРЕСС"
(495) 107-91-50

АВОК ассоциированный
член
Summary:

Применение современных деаэраторов для деаэрации воды в ЦТП

Описание:

На смену типовым термическим деаэраторам постепенно приходят различные современные конструкции. Кроме больших размеров деаэрационной колонки типовые деаэраторы имеют общеизвестные конструктивные и компоновочные недостатки:

Применение современных деаэраторов для деаэрации воды в ЦТП

На смену типовым термическим деаэраторам постепенно приходят различные современные конструкции1. Кроме больших размеров деаэрационной колонки типовые деаэраторы имеют общеизвестные конструктивные и компоновочные недостатки:

  • недогрев деаэрируемой воды при быстром изменении режима с потерей качества деаэрации;
  • сложность регулирования, гидродинамическая неустойчивость при переменных режимах;
  • гидроудары, разрушение внутренних элементов барботажной ступени и технологических перегородок деаэратора [1–2].

Согласно теории, деаэрация – это процесс удаления из воды растворенных газов путем диффузии. Движущей силой диффузии является разность концентраций растворенных газов, прежде всего О2, в воде и окружающем воду водяном паре [3–5].

Основными ограничениями для диффузии растворенных газов из воды являются температура деаэрируемой воды, которая всегда должна быть на несколько градусов выше температуры насыщения, а также время контакта водяной и паровой фаз. Этого времени должно быть достаточно для полного завершения процесса диффузии.

Ускорение диффузии газов из воды можно организовать за счет увеличения поверхности раздела фаз «вода–пар». Технически это происходит в результате разделения потока деаэрируемой воды на пленки, струи или дробления ее на капли.

Типовые деаэраторы также получили свое дальнейшее развитие исходя из понимания конструкторами-теплотехниками ранее указанных ограничений: переливные тарелки в деаэрационной колонке сменились струйными, многие современные деаэраторы, в том числе и «бесколонковые», используют дробление деаэрируемой воды на капли.

В современных щелевых деаэраторах после мелкодисперсного распыления деаэрируемой воды дополнительно используется гидродинамическое разделение водяной и паровой фаз на криволинейной поверхности, что дает дополнительное ускорение процессу диффузии.

В бесколонковом деаэраторе, который упоминается в статье, используется та же схема двухступенчатой термической деаэрации, что и в типовых атмосферных деаэраторах: первая ступень – подача воды через капельную ступень в паровое пространство над зеркалом воды в баке, и вторая ступень – барботаж воды паром, который подводится непосредственно в бак.

Отдельно стоит вопрос об использовании термических деаэраторов любого типа в ограниченном объеме тепловых пунктов. Вопрос этот более чем актуален, так как, с одной стороны, правила эксплуатации требуют определенного качества воды в трубопроводах, а с другой – затраты на установку системы деаэрации достаточно быстро окупаются за счет резкого снижения затрат на устранение последствий коррозии трубопроводов и теплотехнического оборудования.

Следует отметить, что основное препятствие для использования деаэраторов в тепловых пунктах – это отнюдь не размер деаэрационной колонки или бака запаса деаэрированной воды. Более того, размер бака для деаэраторов, устанавливаемых в тепловых пунктах, практически не имеет значения (в отличие, например, от деаэраторов, работающих на питание котлов, где есть строгое ограничение по минимальной емкости бака).

Основное препятствие для использования деаэраторов в тепловых пунктах – это температура деаэрируемой воды, а точнее, соответствующее этой температуре давление, при котором происходит деаэрация. В тепловых пунктах, в отличие от тепловых станций и паровых котельных, отсутствует водяной пар, а температурный график в подавляющем большинстве случаев не позволяет нагреть деаэрируемую воду до температуры около 104 °C, чтобы деаэрировать ее в деаэраторе атмосферного типа, т. е. при атмо-сферном давлении.

Стандартная температура деаэрируемой воды в ЦТП, как правило, составляет 60–80 °C, и для ее деаэрации необходимо применять вакуумные деаэраторы с рабочим давлением (вакуумом) в деаэраторе 0,02–0,045 МПа абс (–0,8–0,55 атм). Для свободного слива деаэрированной воды из-под такого вакуума необходим запас высоты гидростатического столба 8–10 метров. Однако, в отличие от зданий котельных, типовые здания ЦТП имеют высоту всего три метра, и применение вакуумных деаэраторов без проведения дорогостоящих строительных работ становится невозможным.

Таким образом, для применения того или иного типа деаэратора для деаэрации воды в тепловом пункте при определении температуры деаэрации необходимо прежде всего принимать во внимание располагаемую высоту установки деаэрационного оборудования.

Самый простой способ – поднять деаэрационную колонку на требуемую расчетную высоту с помощью надстройки или металлоконструкции. Возможно также применение специализированных насосов, позволяющих откачивать воду из-под вакуума, однако насосы, позволяющие компенсировать вакуум до –0,8 атм, промышленностью практически не производятся.

Существует современный способ деаэрации воды в ЦТП – это применение специализированных деаэрационных модулей, оборудованных водоструйными насосами-эжекторами, позволяющими откачивать деаэрированную воду из-под вакуума.

Так, например, вакуумный щелевой деаэратор ДЩ (В) состоит из бака деаэрированной воды, проектируемого под местные условия установки, щелевой деаэрационной колонки, расположенной либо на баке, либо непосредственно в баке, встроенного или выносного охладителя выпара, вакуум-эжектора для создания вакуума в деаэраторе и струйных водо-водяных эжекторов ВСН для откачивания деаэрированной воды из-под вакуума и подачи ее на насосы ЦТП.

Такая конфигурация оборудования позволяет использовать вакуумную деаэрацию в помещениях ЦТП с небольшой высотой потолков. А решение о применении конкретного типа деаэратора принимается потребителем или проектной организацией исходя из местных условий и профессиональной компетенции.

Укрупненная принципиальная схема №1 установки щелевого вакуумного деаэратора в ЦТП (бак деаэрированной воды работает под атмосферным давлением)

Рисунок 1.

Укрупненная принципиальная схема №1 установки щелевого вакуумного деаэратора в ЦТП (бак деаэрированной воды работает под атмосферным давлением)

Укрупненная принципиальная схема №2 установки щелевого вакуумного деаэратора в ЦТП (бак деаэрированной воды работает под вакуумом)

Рисунок 2.

Укрупненная принципиальная схема №2 установки щелевого вакуумного деаэратора в ЦТП (бак деаэрированной воды работает под вакуумом)

Литература

  1. Новый способ деаэрации жидкости // ЭНЕРГЕТИК – 1998 – № 9–10
  2. Кувшинов О. М. Щелевые деаэраторы КВАРК – эффективное устройство для деаэрации жидкости // Промышленная энергетика – 2007 г. – № 7.
  3. РТМ 108.030.21–78 Расчет и проектирование термических деаэраторов.
  4. Шарапов В. И. Подготовка подпиточной воды систем теплоснабжения с применением вакуумных деаэраторов. М.: Энергоатомиздат, 1996.
  5. Шарапов В. И., Цюра Д. В. Термические деаэраторы. Ульяновск: УлГТУ, 2003.

 

1 См. статью В. С. Галустова «О бесколонковых деаэраторах (проблемы и решения)», опубликованную на с. 42 данного номера журнала.

купить online журнал подписаться на журнал
Поделиться статьей в социальных сетях:

Статья опубликована в журнале “Сантехника” за №2'2015

распечатать статью распечатать статью PDF pdf версия


Реклама
Реклама на нашем сайте
Rambler's Top100 Rambler's Top100 Яндекс цитирования



Кондиционирование, отопление, вентиляция

Подписка на журналы

АВОК
АВОК
Энергосбережение
Энергосбережение
Сантехника
Сантехника
Онлайн-словарь АВОК!


Реклама на нашем сайте