МОГУТ ЛИ ВЫСОТНЫЕ ЗДАНИЯ ИМЕТЬ ОКОЛОНУЛЕВОЕ ПОТРЕБЛЕНИЕ ЭНЕРГИИ?

(ЧАСТЬ 1)

Алессандро Сандэлевски (Alessandro Sandelewski)

КЛЮЧЕВЫЕ СЛОВА

значения терминов классификация высотных зданий

расчет теплопоступлений и теплопотерь

ZEB, nZEB, NZEB

В наше время высотные здания строятся повсеместно во всех крупных городах мира. Например, в странах Европейского союза действующие законы требуют, чтобы все здания, вводимые в эксплуатацию после 2020 года, имели околонулевое потребление энергии (NZEB). Возможно ли построить высотное здание с околонулевым потреблением энергии? Чтобы ответить на вопрос, рассмотрим специфику проектирования систем ОВиК высотных зданий и концептуальные решения построения инженерных систем, которые позволяют достичь околонулевого потребления энергии.

вропейская директива 2010/31/EC по энергоэффективности зданий (Directive 2010/31/EU on the energy performance of buildings — EPBD) вводит понятие здания с околонулевым потреблением энергии (Near Zero Energy Buildings — NZEB). Ст. 9 данной директивы вводит следующие требования к государствам — членам EC:

- Все здания, принадлежащие общественным организациям и государственным институтам, вводимые в эксплуатацию после 31 декабря 2018 года, должны иметь околонулевое потребление энергии.
- После 31 декабря 2020 года все здания, вводимые в эксплуатацию, должны иметь околонулевое потребление энергии.

При этом государства — члены EC самостоятельно разрабатывают национальные стандарты и определяют, какие здания можно отнести к NZEB. В Италии, например, в соответствии с декретом от 26 июня 2015 года зданием с околонулевым потреблением энергии может считаться здание, в котором 50% энергопотребления систем отопления, вентиляции, кондиционирования и ГВС обеспечивается за счет возобновляемых источников энергии.

Оставив в стороне юридические тонкости национальных стандартов, рассмотрим общее значение терминов ZEB, nZEB и NZEB.

OF ABTOPE

Алессандро Сандэлевски,

дипломированный инженер, почетный член CIBSE, ASHRAE, эксперт LEED GA, независимый консультант

ZEB (Zero Energy Building) – здание с нулевым потреблением энергии

Здания с нулевым потреблением энергии полностью покрывают свою потребность в энергии за счет возобновляемых источников. По сути, это утопия, поскольку при существующих технологиях энергия из возобновляемых источников не может быть доступна круглый год в достаточном количестве. Например, солнечная энергия недоступна в ночное время и ограниченно доступна зимой. При этом системы аккумуляции энергии слишком дороги и требуют значительного пространства в здании для размещения.

nZEB (Net Zero Energy Building) – здание с чистым нулевым потреблением энергии

Этот тип зданий подключен к внешним сетям электроснабжения и в случае профицита генерации энергии от возобновляемых источников передает излишки в сеть, а в случае дефицита генерации энергии от возобновляемых источников потребляет энергию из внешних сетей. При этом итоговый годовой баланс потребления энергии из внешних сетей и передачи энергии во внешние сети должен быть равен нулю. В отличие от ZEB, здания с чистым нулевым потреблением энергии в периоды дефицита генерации энергии от возобновляемых источников энергии могут потреблять энергию от сжигания ископаемых видов топлива, поскольку в ночное время (наступает одновременно на 2,5 континентах — Европа, Африка и Ближний Восток) только этот вид генерации энергии может обеспечить требуемый уровень

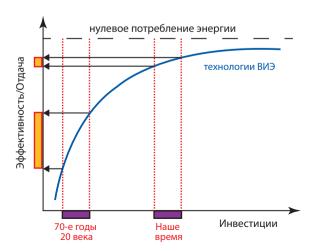


Рис. Закон убывающей отдачи

потребления. И не стоит забывать о серьезных проблемах с пространством для размещения оборудования для генерации энергии от возобновляемых источников — при дефиците свободных площадей достичь чистого нулевого потребления энергии невозможно. Стоит упомянуть и размер капитальных затрат на реализацию nZEB-решений: достижение нулевого потребления — это асимптотический процесс (закон убывающей отдачи, Шеппард, 1974 год).

NZEB (Nearly Zero Energy Building) – здания с околонулевым потреблением энергии

Попытаемся определить, что же именно считать «околонулевым». В Италии для производства I 000 кВт•ч/год в среднем требуется 6–7 м² фотоэлектрических панелей. Энергия от возобновляемых источников всегда должна анализироваться в привязке к площади, занимаемой оборудованием для генерации.

 Δ ля понимания термина «околонулевое» используем два коэффициента — SFV_{eq} и PtZ.

Номер формулы в тексте	Формула			
(1)	$SFV_{eq} = 7 \times \frac{CE_{Tot} + (9.6 \times CM_{tot} \times 0.55)}{GES_{Stim}}$			
(2)	$PtZ = \frac{\eta_{SF \text{ installato}} \times SFV_{\text{installato}}}{0,144 \times SFV_{eq}}$			
(3)	$t_{\rm H} = t_{\rm o} - 0{,}0065 \times H$			
(4)	$P_{H} = 101,325 \times [(1 - 2,2577 \times 10^{-5} \times H)]^{5,2559}$			
(5)	$\rho_{H} = 1 / [287,055 \times (t_{H} + 273,15) \times (1+1,6078 \times 0,00673 / P_{H}) / 1 000]$			

Обозначения в формулах

 CE_{Tot} – годовое потребление электроэнергии, кВт \bullet ч

9,6 [в формуле (1)] – удельная теплота сгорания, кВт•ч/Нм³

CM_{tot} – годовое потребление природного газа (Нм³)

0,55 [в формуле (1)] – максимально возможный КПД системы генерации и распределения электроэнергии от сжигания природного газа

 GES_{stim} — энергия потока солнечного излучения, поступающего на 1 м² за год (1 060 кВт•ч в Милане, 1 180 кВт•ч в Риме и 1 260 кВт•ч в Бари)

7 [в формуле (1)] — площадь фотоэлектрических модулей, необходимая для производства 1 кВт/пик (при КПД модулей = 14,4%)

 $\eta_{ ext{SFinstallato}} - ext{K}\Pi\Delta$ установленных модулей

 ${\sf SFV}_{\sf installato}^{}-$ площадь установленных фотоэлектрических модулей, ${\sf M}^2$

 $SFV_{\rm eq}$ — эквивалентная площадь фотоэлектрических модулей, м² $t_{\rm u}$ — температура наружного воздуха на высоте H, °C

, – температура наружного воздуха у поверхности земли, °C

Н – высота здания, м

 $P_{\rm H}$ – атмосферное давление на высоте H, к Π а

 $\rho_{\rm H}$ – плотность воздуха на высоте H, кг/м 3

HTTP://ENERGO-JOURNAL.RU/

Таблица I Характеристики наружного воздуха на разных высотных отметках, г. Джидда, Саудовская Аравия

Высота, м	Температура, °С		Относительная	Атмосферное	Плотность,	Энтальпия,
	Сухой терм.	Влажный терм.	влажность, %	давление, кПа	кг/м³	кДж/кг
0	41,0	30,0	45,4	101,325	1,112	99,40
100	40,4	29,4	45,1	100,128	1,101	97,15
200	39,7	28,7	44,6	98,943	1,090	94,43
300	39,1	28,1	44,3	97,770	1,079	92,24
400	38,4	27,4	43,9	96,770	1,069	89,62
600	37,1	26,1	43,1	94,316	1,048	84,96
800	35,8	24,8	24,2	92,069	1,027	80,46

I. SFV_{eq} (Equivalent Photovoltaic Surface) — это эквивалентная площадь фотоэлектрических модулей. Другими словами, это площадь фотоэлектрических модулей, необходимая для покрытия энергопотребления здания в годовой перспективе и достижения показателей чистого нулевого потребления энергии. Для того чтобы рассчитать SFV_{eq} здания, необходимо разделить его годовое энергопотребление на энергию, получаемую за год от $I m^2$ фотоэлектрического модуля в регионе, где расположено здание. Определить эквивалентную площадь фотоэлектрических модулей для здания, потребляющего только природный газ и энергию от внешней сети электроснабжения, можно по формуле (I) (см. Формулы).

2. PtZ (Proximity to Zero) — коэффициент близости к нулю. Этот коэффициент показывает отношение площади фактически установленных фотоэлектрических модулей к площади фотоэлектрических модулей, необходимых для достижения чистого нулевого потребления энергии зданием, и позволяет оценить, насколько близко здание к «околонулевому» потреблению (см. формулу (2)).

Энергомоделирование для офисных зданий и отелей стандартной высоты показывает, что в Италии достижение 100%-ного PtZ на практике невозможно. Если в расчете учитывать все системы здания, потребляющие электроэнергию (лифты, эскалаторы и прочее), то показатель 50–60% уже можно считать успешным результатом.

В высотных зданиях обеспечить близость к нулевому потреблению еще сложнее в силу специфики инженерных систем, описанной далее по тексту.

Классификация высотных зданий

Высотные здания могут быть классифицированы согласно терминологии ASHRAE как: высотные — выше 100 м; супервысотные — выше 300 м; мегавысотные — выше 600 м; убервысотные (термин не является официальным) — выше 1000 м.

При проектировании высотных зданий особое внимание нужно уделить, во-первых, расчету теплопоступлений и теплопотерь, во-вторых, эффекту тяги и, в-третьих, проектированию гидравлических систем.

Расчет теплопоступлений и теплопотерь

Температура и влажность наружного воздуха, атмосферное давление и плотность воздуха изменяются по мере увеличения высоты над уровнем моря. Стандартный подход,

когда эти данные принимают едиными для всего здания, не проходит в случае высотных зданий. Расчет температуры, атмосферного давления и плотности воздуха выполняют по формулам (3)–(5), где за нулевую высоту принимают высоту над уровнем моря.

В качестве примера приведем распределение показателей для высотного здания в г. Джидда, Саудовская Аравия (высота 0 м над уровнем моря). Согласно данным ASHRAE, температура воздуха для данного региона 41 °C по сухому термометру и 30 °C по влажному термометру (табл. I).

Если принять параметры воздуха в помещении 24 °С при относительной влажности 50%, то в момент времени, когда на отметке уровня моря показатели наружного воздуха (теоретически) будут равны показателям воздуха в помещении, отклонения значений температуры и влажности наружного воздуха по высоте здания указаны в табл. 2.

Таблица 2 Разница температуры и влажности воздуха в помещении и наружного воздуха для высотного здания в г. Джидда, Саудовская Аравия

Высота, м	ΔΤ,%	ΔН,%
0	0	0
100	-3,82	-4,37
200	-7,65	-9,65
300	-11,47	-13,9
400	-15,29	-18,99
600	-22,94	-28,04
800	-30,59	-36,78

Очевидно, что стандартный подход, при котором параметры наружного воздуха принимаются без учета их изменений по высоте здания, приведет к тому, что в теплый период года система будет переразмеренной (большой запас мощности), а в холодный период года система будет иметь дефицит мощности.

В следующем номере журнала «Энергосбережение» будет рассмотрено влияние эффекта тяги и гидравлических систем в высотных зданиях, а также дан ответ на вопрос, может ли высотное здание иметь околонулевое потребление энергии.

Перевод и техническая редактура выполнены В. В. Устиновым