

О сходимости результатов испытаний отопительных приборов по ГОСТ 53583-2009 в различных условиях

М. Тимофеев, заместитель технического директора, начальник испытательной лаборатории «Данфосс»

Ф. Шаповалов, инженер-испытатель «Данфосс»

настоящее время испытаниями отопительных приборов занимается большое количество лабораторий. При этом возникает вопрос о сопоставимости результатов межлабораторных сравнительных испытаний (МСИ).

Например, в EN 442-2 «Радиаторы и конвекторы. Часть 2. Методы испытаний и оценка» принято, что величина номинального теплового потока одного и того же отопительного прибора при испытаниях в различных лабораториях не должна отличаться более чем на 1%. Однако первые результаты таких испытаний в России показывают существенные различия. Их причины, на наш взгляд, заключаются в недостатках методики проведения испытаний. Помимо однозначно определенных в ГОСТ 53583-2009 «Приборы отопительные. Методы испытаний» условий существуют и такие, которые предлагаются в качестве вариантов на усмотрение испытателя.

1. Стена испытательной камеры, у которой расположен испытываемый отопительный прибор, должна быть отключена от системы охлаждения, а панели охлаждения стены опорожнены. Как вариант, допускается охлаждать эту стену в случае, если участок стены за радиатором утеплен по всей длине стены на высоту 1 ± 0.05 м.

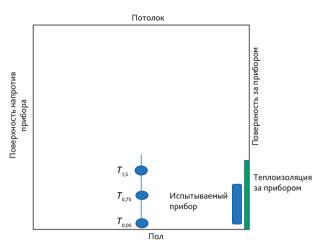
В испытательной камере необходимо поддерживать заданную температуру. В таком случае изменение режима охлаждения одной стены приведет к изменению температур других стен. Это может отразиться на результатах испытаний.

2. В качестве расчетной температуры воздуха в испытательной камере следует принимать среднюю по результатам измерений в двух точках на центральной вертикальной оси камеры на расстоянии $0.05 \text{ м} \ (T_{0.05}) \text{ и } 1.5 \text{ м} \ (T_{1.5}) \text{ от пола. В то же время, как вариант, в качестве расчетной допускается принимать температуру воздуха в точке на расстоянии <math>0.75 \text{ м} \ (T_{0.75}) \text{ от пола на той же вертикальной оси. Таким образом, предполагается, что температуры воздуха в камере, определенные как средняя по измерениям на высотах <math>0.05, 0.75 \text{ и } 1.5 \text{ м} \text{ от пола, должны совпадать.}$

Требования к соблюдению равномерности распределения температур воздуха по высоте камеры

¹ ГОСТ 53583-2009 «Приборы отопительные. Методы испытаний» заданы условия по определению основной характеристики отопительного прибора – номинального теплового потока.

отсутствуют. Можно предположить, что такая неравномерность существует. В таком случае возникает вопрос о выборе точки замера температуры с целью определения температурного напора. Использование в различных лабораториях разных точек определения расчетной температуры воздуха может приводить к несовпадению результатов определения тепловых потоков одного и того же отопительного прибора.


3. Испытания необходимо проводить без охлаждения пола и стены испытательной камеры, противоположной отопительному прибору.

Согласно требованию ГОСТ испытательная камера должна располагаться в отапливаемом помещении. Но несмотря на теплоизоляцию стен камеры, окружающий воздух снаружи оказывает влияние на температуры неохлаждаемых стен. Например, камера может быть расположена в производственном помещении, где минимальная температура воздуха должна быть не менее 10°С. Максимальная температура воздуха может превышать температуру воздуха вне помещения из-за нагрева солнцем или тепловыделения от оборудования. Следует также учитывать и движение воздуха, которое интенсифицирует теплообмен со стенами испытательной камеры.

Таким образом, система охлаждения камеры за счет изменения температур стен должна компенсировать влияние окружающих условий, что, в свою очередь, может влиять на результаты испытаний.

Чтобы определить влияние перечисленных выше условий на результаты испытаний, в лаборатории «Данфосс» были проведены исследования в соответствии с требованиями ГОСТ 53583-2009.

Метод испытаний - электрический, средства измерений (термометры, расходомер, ваттметр) имеют поверочные сертификаты. Питание от стабилизированного источника. Все стены испытательной камеры охлаждались независимо друг от друга, что позволило поддерживать требуемые расходы и температуры охлаждающей жидкости в них. Температуры стен определялись по средним температурам охлаждающей жидкости при помощи погружных термометров. Температуры воздуха в испытательной камере определялись по трем термометрам, установленным на различных расстояниях от пола ($T_{0,05}, T_{0,75}, T_{1,5}$), расчетная температура воздуха принималась по показаниям термометра $T_{0.75}$. Учтена поправка на атмосферное давление. Температура воздуха в помещении, где установлена испытательная камера, поддерживалась на уровне 22±1°C.

■ Рис. 1. Схема испытательной камеры

1.0 м.

Исследования проведены на отопительных приборах различных типов с различными долями теплоотдачи излучением:

- стальной штампованный радиатор тип 10 (S=0,45);
- биметаллический секционный радиатор (S=0.27);
- медно-алюминиевый напольный конвектор (S=0,05).

Исследованы четыре варианта охлаждения стен. Вариант 1: охлаждались потолок, боковые стены, поверхность за прибором. Поверхность за прибором утеплена на всю длину стены на высоту

Вариант 2: охлаждались потолок, боковые стены. Поверхность за прибором не охлаждалась, но утепление как в варианте 1 сохранено.

Варианты 1 и 2 рассмотрены с целью определения влияния режима охлаждения стены за испытываемым прибором на тепловой поток.

Вариант 3: охлаждались потолок, боковые стены, поверхность за прибором. Поверхность за прибором охлаждалась и утеплена на всю длину стены на высоту 1,0 м. Кроме этого, температуры пола и поверхности напротив прибора поддерживались на уровне 25°C.

Вариант 4: охлаждались потолок, боковые стены, поверхность за прибором. Поверхность за прибором охлаждалась и утеплена на всю длину стены на высоту 1,0 м. Кроме этого, температуры пола и поверхности напротив прибора поддерживались на уровне 18°C.

Варианты 3 и 4 исследованы с целью определения влияния температур пола и стены напротив отопительного прибора на тепловой поток.

Схема испытательной камеры представлена на рис. 1.

Таблица 1 Разность между средней температурой воздуха в испытательной камере, определенной по температурам $T_{0,05}$ и $T_{1,5}$, и температурой $T_{0,75}$ и ее влияние на тепловой поток

Исследуемый прибор	Вариант 1	Вариант 2	Вариант 3	Вариант 4	
Панельный радиатор					
Разность температур, °С	+0,32	-0,22	+0,40	-0,14	
Влияние на тепловой поток, %	+0,4	-0,3	+0,6	-0,2	
Биметаллический радиатор					
Разность температур, °С	+0,08	-0,04	+0,34	-0,17	
Влияние на тепловой поток, %	+0,1	-0,1	+0,5	-0,2	
Конвектор					
Разность температур, °С	-0,05	-0,04	+0,25	-0,29	
Влияние на тепловой поток, %	-0,1	-0,1	+0,4	-0,4	

Определение влияния точки замера температуры воздуха в испытательной камере

В ходе этого исследования сравнивались варианты определения расчетных температур воздуха в испытательной камере, измеренных на расстоянии 0,75 м от пола, и средней, определенной как полусумма температур, измеренных на расстояниях 0,05 и 1,5 м от пола.

Результаты сравнения указанных температур и их влияние на тепловой поток при температурном напоре 70°С представлены в табл. 1.

Известно, что величина теплового потока пропорциональна температурному напору, который определяется исходя из температуры воздуха в камере и средней температуры теплоносителя в отопительном приборе.

Как видно из представленных данных, для варианта 1, например в случае панельного радиатора, расхождение в определении расчетной температуры воздуха составляет 0,32°С, что приводит к разнице при определении теплового потока в 0,4%. Для варианта 3 расхождение составляет 0,6%. При стремлении к сходимости результатов МСИ в 1% это довольно существенные значения.

В связи с этим важно, чтобы точка замера расчетной температуры воздуха была определена в ГОСТ однозначно для всех испытателей.

Исследование влияния вариантов охлаждения стен испытательной камеры на тепловой поток испытываемого отопительного прибора

В табл. 2 представлены величины отклонений средних температур стен в вариантах 2, 3 и 4 в сравнении с вариантом 1 при температурном напоре 70°С как наиболее применяемом в практике проведения испытаний.

В варианте 2 наблюдается снижение температур охлаждаемых стен по причине уменьшения суммарной поверхности охлаждения стен испытательной камеры. Также следует отметить влияние температур пола и противоположной стены на температуры охлаждаемых стен – при повышении температур пола и противоположной стены происходит уменьшение температур других стен, при понижении – повышение. Это также объясняется условием поддержания требуемой температуры воздуха в испытательной камере.

Таблица 2 Отклонения средних температур охлаждаемых стен

Значения отклонений средних температур стен относительно варианта 1, °C					
Стена	Вариант 2 Вариант 3		Вариант 4		
Панельный радиатор					
Потолок	-0,4	-1,5	+2,5		
Слева от прибора	-1,2	-1,2	+2,5		
Справа от прибора	-1,2	-1,1	+2,5		
Биметаллический радиатор					
Потолок	+0,3 -1,1		+0,3		
Слева от прибора	-0,8	-1,1	+2,4		
Справа от прибора	-0,8	-1,1	+2,2		
Конвектор					
Потолок	0,0	-2,6	+2,4		
Слева от прибора	-1,0	-2,1	+1,4		
Справа от прибора	-1,0	-2,1	+1,4		

Таблица 3

Значения тепловых потоков для панельного радиатора

Температурный напор, °C	Вариант 1	Вариант 2	Вариант 3	Вариант 4
Тепловой поток, Вт				
30	337,4	336,3	343,8	330,9
50	651,9	651,9	662,6	642,3
70	1006,1	1008,0	1020,6	994,3
Сравнение с вариантом 1, %				
30	_	-0,3	+1,9	-1,9
50	_	-0,0	+1,6	-1,5
70	_	+0,2	+1,4	-1,2

Таблица 4

Значения тепловых потоков для биметаллического радиатора

Температурный напор, °C	Вариант 1	Вариант 2	Вариант 3	Вариант 4
Тепловой поток, Вт				
30	390,9	377,1	378,0	378,1
50	731,0	726,5	723,3	723,5
70	1104,0	1116,6	1109,1	1109,4
Сравнение с вариантом 1, %				
30	-	-3,5	-3,3	-3,3
50	_	-0,7	-1,1	-1,0
70	_	+1,2	+0,5	+0,5

Таблица 5

Значения тепловых потоков для конвектора

Температурный напор, °C	Вариант 1	Вариант 2	Вариант 3	Вариант 4
Тепловой поток, Вт				
30	298,1	295,6	300,3	299,3
50	618,6	618,5	617,0	622,8
70	1000,6	1005,9	991,3	1009,3
Сравнение с вариантом 1, %				
30	_	-0,8	+0,8	+0,4
50	_	0,0	-0,3	+0,7
70	_	+0,5	-0,9	+0,9

Ниже рассмотрено влияние режимов охлаждения стен на величины теплового потока отопительного прибора.

Значения тепловых потоков, приведенные к напорам 30, 50, 70°C, представлены в табл. 3–5. За основу в сравнении взят вариант 1.

Номинальный тепловой поток в варианте 2 по сравнению с вариантом 1 для исследованных приборов увеличился в пределах 0,2–1,2%. В вариантах 3 и 4 изменение номинального теплового потока составило 0,5–1,4%.

Указанные величины расхождений результатов определения номинального теплового потока не позволят добиться сходимости результатов МСИ в 1%.

Заключение

В последние годы ведется работа по совершенствованию нормативной базы в области отопительных приборов. Результаты исследований, приведенные выше, могут также внести вклад в этот процесс. В целях снижения уровня расхождения результатов испытания одного и того же отопительного прибора в различных испытательных центрах считаем актуальным в новой редакции ГОСТ 53583-2009 принять следующие условия:

- проводить испытания отопительных приборов с охлаждением стены камеры за отопительным прибором с сохранением утепления за прибором;
- принять точку замера расчетной температуры воздуха в испытательной камере на высоте 0,75 м от пола по вертикальной оси камеры в качестве однозначного требования ГОСТ;
- исключить влияние температур пола и стены напротив прибора. Это возможно осуществить либо ограничением диапазона изменения температур воздуха в помещении, где установлена испытательная камера, либо путем поддержания требуемой стабильной температуры соответствующих поверхностей камеры.