

К написанию настоящей статьи автора побудил тот факт, что в последнее время все чаще некоторые проектные организации по каким-то причинам без должного, на наш взгляд, обоснования для типовых котельных стали закладывать в проекты так называемые бесколонковые деаэраторы. Кроме удорожания схемы водоподготовки, дополнительных эксплуатационных проблем и иллюзии компактности это не дает каких-либо заметных преимуществ. Попытаемся разобраться.

Немного истории

Впервые деаэраторы стали применяться в большой энергетике в начале минувшего столетия. Это были противоточные тепломассообменные аппараты, заимствованные из химической

Рис. 1. Деаэратор типа ДА

промышленности того времени. Поначалу они были только пленочными и представляли собой цилиндрическую колонну с кольцами Рашига или вертикальными пластинами. Насадочные колонки можно изредка встретить и сегодня, с пластинами—очень редко. Примерно в 50-е годы появились барботажные колонны (колонки) с провально-переливными тарелками.

Следует отметить, что такие тарелки являются самыми примитивными и в химической промышленности практически не встречаются, в энергетике же они остались самыми распространенными до настоящего времени, например в деаэраторах типа ДА.

Типичный деаэратор обычно ассоциируется с горизонтальной цилиндрической емкостью с вертикальной, также цилиндрической, надстройкой. Общая высота сооружения может достигать 8–10 метров.

Как правило, на ТЭЦ самое высокое здание—это котельный цех с деаэраторным отделением. Внешний вид деаэратора типа ДА показан на рис. 1 (охладитель выпара не показан).

О бесколонковых деаэраторах заговорили в середине прошлого века в связи со строительством подводных и надводных атомных кораблей, когда высота оборудования становится решающим фактором.

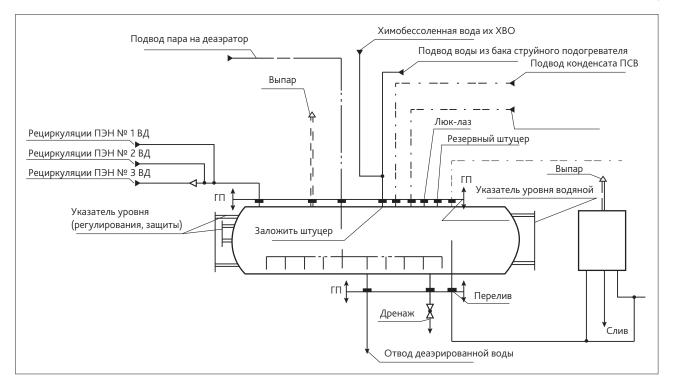


Рис. 2. Схема деаэрационной установки с бесколонковым деаэратором и охладителем выпара поверхностного типа. На схеме показаны все потоки

Что же такое бесколонковый деаэратор?

Упомянутая горизонтальная цилиндрическая емкость понималась как хранилище запаса деаэрированной воды для обеспечения надежной работы схемы питания котлов или подпитки тепловых сетей. Вертикальный цилиндр—это, собственно, и есть деаэратор (десорбер растворенных газов) колонного типа.

По мере увеличения мощности ТЭЦ росли и мощности деаэрационных установок и, что еще более важно, повышались требования к глубине деаэрации воды, т.е. снижалась остаточная допустимая концентрация О₂ и CO₂.

Естественно, что росли и диаметр, и высота надстройки.

Тогда было найдено, казалось, удачное компромиссное решение: использовать часть объема деаэраторного бака в качестве второй (по ходу воды) ступени деаэрации, т.е. использовать частично высоту деаэраторного бака для деаэрации.

Следующий логичный шаг: весь процесс деаэрации проводить в деаэраторном баке и совсем избавиться от надстройки. На рис. 2 приведена схема реальной деаэрационной установки с бесколонковым деаэратором и охладителем выпара поверхностного типа. На схеме показаны все потоки.

Вместе с тем решение одной проблемы породило целый ряд новых. Выделение коррозионно-активных газов непосредственно в баке стало приводить к его интенсивному износу. Уменьшение высоты оказалось довольно иллюзорным. По расположению переливной воронки видно, что объем воды в баке занимает примерно 60% объема бака. При этом деаэратор стал дороже установки бакаколонка, а при равной цене существенно уступал классическому варианту по сроку службы. Конечно, для атомной подводной лодки или ледокола деаэратор можно сделать из высоколегированной стали. Да и котлы тоже. Обычная районная котельная позволить себе такое не может.

Другая проблема – огромная инерционность управления. При стабильных режимах работы это не столь существенно, но при больших колебаниях нагрузок, что имеет место в большинстве котельных, периодическое ухудшение качества деаэрации становится неизбежным. Кроме того, фактически для всех барботажных аппаратов, особенно с высоким барботажным слоем, характерна большая чувствительность эффективности деаэрации к отклонениям от номинальных режимов.

Все это вовсе не значит, что нет других путей решения проблемы компактности, тем более что рост востребованности модульных котельных, которые размещаются в нескольких вагончиках

ограниченной высоты (2,6–2,8 м) шириной около 3 м, вызвал новую волну интереса к компактным деаэраторам.

Как создать деаэрационную установку минимальной высоты

Первое: необходимо максимально снизить зависимость эффективности деаэрации от высоты контактного устройства (собственно деаэратора).

Этот шаг оказался возможным только при отказе от традиционного противоточного принципа взаимодействия фаз (деаэрируемой воды и греющего пара) при переходе к прямотоку и от пленочной (или пузырьковой) поверхности контакта к капельной. Достаточно подробно об этом изложено в [1]. На этой основе разработаны все деаэраторы группы «Туман», в частности атмосферные типа ДАПР [2–5], в том числе для модульных котельных.

Повышение производительности таких колонок легко обеспечить за счет увеличения размеров в плане без увеличения высоты, которая даже при нагрузках в несколько сотен т/ч не превышает 2,5–3 м. ДАПРы открыли и еще одну возможность: они могут выполняться горизонтальными высотой до 1,2–1,4 м типа ДАПР-г.

Так как ДАПРы являются автономными аппаратами и соединяются с деаэраторным баком только сливной и дыхательной трубами, то они могут размещаться в любом удобном месте (лишь бы отметка позволяла сливать деаэрированную воду в бак самотеком).

Кроме того, все колонки типа ДАПР содержат встроенный охладитель выпара

Рис. 3 Установка ДАПР-25/5г

и струйно-капельную ступень подогрева воды до температуры насыщения. Эти особенности упрощают и удешевляют деаэрационную установку, повышают ее надежность и управляемость

О деаэраторных баках

Отметим, что определяющими размерами деаэрационной установки в плане являются размеры деаэраторного бака, поэтому размеры в плане размещаемой над ним колонки на эти габаритные параметры установки не влияют.

Размер традиционных цилиндрических баков определяют два параметра – длина и диаметр. Конечно, для уменьшения высоты можно уменьшить диаметр бака, но тогда длину бака придется увеличивать пропорционально квадрату изменения диаметра бака, что в большинстве случаев невозможно. Итак, диаметр бака жестко задает сразу два размера – высоту и ширину, что очень сужает возможности конструирования. ДАПРы и в этом случае позволяют решить проблему с минимальными затратами

В ДАПРах (и в колонке, и в баке) фактическое атмосферное давление и пар в бак не подаются (барботаж не требуется). Это существенно снижает прочностные требования к баку и позволяет от цилиндрической формы перейти к форме параллелепипеда.

Преимущества здесь очевидны. Во-первых, все размеры можно варьировать, например: уменьшать высоту бака за счет увеличения ширины, сохраняя длину.

Во-вторых, при равных габаритных размерах объем параллелепипеда на 22% больше объема вписанного в него цилиндра, а это еще одна возможность уменьшить высоту установки.

На рис. 3 приведена деаэрационная установка, размещенная в модуле высотой 2,8 м.

Некоторые оценки и сравнения

Для сравнения возьмем типовой деаэратор ДА-50/25 (производительность номинальная 50 т/ч, рабочий объем бака 25 м³), бесколонковый деаэратор БКДА-50 и ДАПР-50/25. Длина бака полная, во всех случаях принята 8,3 м.

Таким образом, используя современные высокоэффективные деаэрационные колонки и прямоугольные баки в сочетании с модульным подходом, можно удовлетворить даже самые жесткие габаритные ограничения [6].

Тип деаэратора	Габариты, м		
	длина	ширина	высота
ДА-50/25			
Колонка	1,1	1,1	2,4
Бак	8,3	2,6	2,6
Установка	8,3	2,6	5,5 (со штуцерами и опорами, но без учета охладителя выпара)
БКДА-50	8,3	2,7	2,7 (без ОВ)
ДАПР-50/25г			
Колонка	2,2	1,8	1,2
Бак	8,3	2,1	1,7
Установка	8,3	2,1	2,9

Небольшое дополнение по теме

Стоит упомянуть еще об одном типе колонок группы ДАПР. Это колонки с встроенным блоком сепарации-теплоутилизации непрерывной продувки котлов (аналогов не имеют) – ДАПР-УТК. Такие колонки позволяют, во-первых, на 30-40% сократить потребление греющего пара и, во-вторых, существенно упростить и удешевить (а также сделать более компактной) деаэрационную установку.

Колонки ДАПР-УТК содержат: внутреннюю стуйно-капельную ступень подогрева воды, встроенный охладитель выпара, блок сепарации непрерывной продувки с утилизацией выделившегося пара в блоке деаэрации.

Таким образом, такая установка заменяет деаэратор с баком и гидрозатвором, охладитель выпара, подогреватель ХОВ, сепаратор непрерывной продувки и позволяет исключить барботер, теплообменник, барботажное устройство.

Литература

- 1. Галустов В. С. Прямоточные распылительные аппараты в теплоэнергетике. М.: Энергоатомиздат, 1989.
- 2. Галустов В. С. Термические деаэраторы воды // AKBA-TEPM. – 2004. – № 6.
- 3. Галустов В. С. Термическая деаэрация воды // Энергия и менеджмент. – 2004. – № 1.
- 4. Галустов В. С. Об энергетической эффективности термических деаэраторов воды // Промышленные и отопительные котельные и мини-ТЭЦ. - 2010. -Nº 5
- 5. Галустов В. С. К выбору термических деаэраторов // Энергия и менеджмент. – 2000. – № 2.
- 6. Галустов В. С. Использование деаэрационных установок в схемах водоподготовки модульных котельных // ВОДА-Магазин. – 2012. – № 1.
- 7. Грищук И. К. Эксплутационные характеристики дегазационных колонок. М.: Госэнергоиздат, 1961.
- 8. Кострикин Ю. М. и др. Водоподготовка и водный режим энергообъектов низкого и среднего давления. М.: Энергоиздат, 1990.

ФИРМЕННЫЙ ИНТЕРНЕТ-МАГАЗИН ОБОРУДОВАНИЯ ДЛЯ КАНАЛИЗАЦИИ, ВЕНТИЛЯЦИИ, ВОДООТВЕДЕНИЯ HL HUTTERER LECHNER

кровельные воронки HL O трапы HL для помещений о дизайн-трапы НL ○ обратные клапаны НL ○ механические канализационные затворы HL О HL затворы с электроприводом ○ сифоны HL для стиральных и посудомоечных машин, для ванн и душевых поддонов, моек, писсуаров, биде • капельные воронки HL для кондиционеров • вентиляционные и воздушные клапаны HLO гидроизоляционные мембраны HLO вытяжные зонты HLO переходники HL

О противопожарные муфты HL ○ ревизии-прочистки HL

элементы подсоединения унитазов HL

